
Agreeing to Disagree and Dilation

Jiji Zhanga, Hailin Liub,, Teddy Seidenfeldc

aDepartment of Philosophy, Lingnan University, Hong Kong, China
bInstitute of Logic and Cognition, Department of Philosophy, Sun Yat-sen University, Guangzhou, China

cIDepartment of Philosophy, Carnegie Mellon University, Pittsburgh, USA

Abstract

We consider Geanakoplos and Polemarchakis’s generalization of Aumman’s famous result on
“agreeing to disagree”, in the context of imprecise probability. The main purpose is to reveal
a connection between the possibility of agreeing to disagree and the interesting and anomalous
phenomenon known as dilation. We show that for two agents who share the same set of priors
and update by conditioning on every prior, it is impossible to agree to disagree on the lower or up-
per probability of a hypothesis unless a certain dilation occurs. With some common topological
assumptions, the result entails that it is impossible to agree not to have the same set of poste-
rior probability values unless dilation is present. This result may be used to generate sufficient
conditions for guaranteed full agreement in the generalized Aumman-setting for some important
models of imprecise priors, and we illustrate the potential with an agreement result involving the
density ratio classes. We also provide a formulation of our results in terms of “dilation-averse”
agents who ignore information about the value of a dilating partition but otherwise update by full
Bayesian conditioning.
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1. Introduction

In a simple but insightful paper, Aumann (1976) famously showed that two (Bayesian) agents
who start with the same (precise) prior cannot agree to disagree on their posteriors of a hypothe-
sis, in the sense that if the posteriors of the hypothesis (as well as the structures of their respective
information partitions) are common knowledge, then the posteriors must be equal. This result
has been generalized in at least two ways. First, Aumman’s result applies only to those events
whose posteriors happen to be common knowledge. Geanakoplos and Polemarchakis (1982)
generalized the framework to a communication setting where the agents are invited to repeatedly
make their credences common knowledge by announcements and update by conditioning on the
announced credences, until no new information is conveyed. They showed that for any hypothe-
sis/event, this communication procedure is guaranteed to lead to an agreement on the probability
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of the hypothesis, if the agents start with the same (precise) prior (and each agent’s information
partition is finite).

Second, Kajii and Ui (2005, 2009) and Carvajal and Correia-da-Silva (2010) generalized
Aumman’s result in the setting of multiple priors. In this line of work, “agreement” is taken
to mean “partial agreement”, in the sense that two sets of probabilities agree if they have a
non-empty intersection. These authors established several sufficient conditions under which two
agents who (partially) agree on their priors are guaranteed to (partially) agree on their posteriors
of a hypothesis if these posteriors are common knowledge.

In this paper, we combine the two more general settings and establish a connection between
the possibility of agreeing to disagree and the interesting and anomalous phenomenon known as
dilation (Good, 1974; Seidenfeld, 1981; Walley, 1991; Seidenfeld and Wasserman, 1993; Herron
et al., 1997). Dilation occurs when conditioning on each element of a partition, the lower and
upper probabilities of a hypothesis become more divergent than the unconditional ones. In such
a case, for agents who use conditioning as their updating rule, their credences on a hypothesis
become less precise or determinate after learning the value of the dilating partition, no matter
which value they learn! This counterintuitive phenomenon is often interpreted as a distinctive
challenge to the orthodox Bayesian doctrine on the value of information and to the Bayesian
merging of opinions, but as far as we know, it has never been discussed in connection to Aum-
man’s result. We shall show that it is the key obstacle to reaching agreements via communicating
posteriors by Bayesian agents with imprecise priors.

We will establish the following. After introducing the setting and reviewing the special case
of precise probabilities in Section 2, we show in Section 3 that dilation is the only obstacle for
Bayesian agents with the same prior to reaching agreements on lower and upper probabilities
of a hypothesis by communicating their posteriors on the hypothesis. Without dilation, the two
agents in our setting are guaranteed to end up agreeing on lower and upper probabilities of the
hypothesis of interest. An immediate consequence of this result, as we note in Section 4, is
that under common topological assumptions, dilation is the only obstacle for Bayesian agents to
reaching a full agreement, full in the sense that the sets of probability values representing their
credences on the hypothesis of interest are identical. This result opens the door to generating
sufficient conditions for reaching full consensus in the generalized Aumman-setting by plugging
in sufficient conditions for the absence of dilation in common and important models of impre-
cise probabilities. As an example, we include a corollary about density ratio classes, which are
shown to be dilation-immune by Seidenfeld and Wasserman (1993). This to our knowledge is
the first attempt to generalize Aumman’s result to the context of imprecise probability that is
concerned with “full agreement”. In Section 5, we provide another perspective on our results
and reformulate the theorems in terms of “dilation-averse” agents, who update by full Bayesian
conditioning unless the information is about the value of a dilating partition (in which case they
ignore the information). For such agents, they are guaranteed to end up agreeing on lower and
upper probabilities, and, when lower and upper probabilities are sufficient to identify the set of
probabilities, end up fully agreeing.

2. A Procedure of Communicating Posteriors

In Geanakoplos and Polemarchakis (1982)’s setup, two agents share a common measurable
space pΩ,Aq and have possibly different information partitions of Ω, P1 and P2, which are
assumed to be finite. Henceforth we use i P t1, 2u to index the two agents, and when i is used
in a statement we always intend that the statement is true for both i “ 1 and i “ 2. For any
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w P Ω, let Pipwq denote the member of Pi that contains w; intuitively, Pipwq represents agent
i’s initial information at state w. Both the space and the partitions are assumed to be common
knowledge, in the standard sense of the term used in game theory: some proposition is common
knowledge just in case agent i knows it, agent j (where j “ 3 ´ i) knows that agent i knows
it, agent i knows that agent j knows that agent i knows it, ... and so on. Let P “ P1 ^ P2 be
the meet of the two partitions (i.e., the finest common coarsening of P1 and P2). As Aumann
(1976, p. 1237) explained, at state w, Ppwq — the member of P that contains w — is the finest
event in A that is common knowledge: any event that is common knowledge is a superset of
Ppwq. In Geanakoplos and Polemarchakis’s setting, common knowledge may grow as the agents
communicate their posteriors of a hypothesis. So we call Ppwq the initial common knowledge
and denote it by C0.

Instead of a common precise prior, we assume that the two agents have a common, (possibly)
imprecise prior, i.e., a common, non-empty set of priors, denoted by Q. Let P1 _ P2 denote
the join (i.e., the coarsest common refinement) of P1 and P2. We assume that every member of
P1 _P2 is non-null — in the sense that it receives a positive probability under every probability
measure in Q — so that all the relevant conditional probabilities are well defined as ratios of
unconditional probabilities. Let H P A be a hypothesis of interest. Henceforth by credences or
posteriors we mean the agents’ credences or posteriors of H or on the simple algebra generated
by the partition tH, Hu. We write QpHq to denote the set of prior probabilities of H, that is,
QpHq “ tppHq | p P Qu. Similarly, for any E P A such that ppEq ą 0 for every p P Q,
let QpH|Eq “ tppH|Eq “ ppH X Eq{ppEq | p P Qu. Unless otherwise noted (in Section 5),
we assume that the agents update their credences by full Bayesian conditioning, where each and
every prior in Q is updated by conditioning.

Suppose the true state is w. At step 0, agent i’s information is Pipwq X C0 “ P
ipwq. Thus

agent i updates her credence of H to Qi
0pHq “ QpH|Pipwqq. Let Pi

0 “ tE P P
i | E X C0 ‰ Øu,

which is the set of those members of Pi that are not ruled out by the common knowledge at step
0.

At step 1, the agents announce Q1
0pHq and Q2

0pHq, respectively.1 Consider N i
1 “ tE P

Pi
0 | QpH|Eq “ Qi

0pHqu. Intuitively, N i
1 is the set of those members of Pi

0 that are compatible
with Qi

0pHq, and the effect of agent i’s announcement of Qi
0pHq is that it becomes common

knowledge that Pipwq P N i
1, or that w P

Ť

N i
1 (where

Ť

N i
1 denotes the union of all the sets in

N i
1). Therefore, after the announcements at this step, C1 “

Ť

N1
1 X

Ť

N2
1 becomes common

knowledge. Let Pi
1 “ tE P N i

1 | E X C1 ‰ Øu, which is the set of those members of N i
1

that are not ruled out by the common knowledge at this step. Clearly Pi
1 Ď N

i
1 Ď P

i
0 and C1 “

Ť

P1
1X

Ť

P2
1. Now, ifPi

1 “ P
i
0, or equivalently, if C1 “ C0, neither agent learns new information

and their credences will stay the same no matter how many more exchanges take place; so the
procedure stops. Otherwise, agent i updates credence of H to Qi

1pHq “ QpH|Pipwq X C1q, and
enters the next step.

In general, at step n` 1, the agents announce Q1
npHq and Q2

npHq, respectively. Let

N i
n`1 “ tE P Pi

n | QpH|E X Cnq “ Qi
npHqu

Cn`1 “
ď

N1
n`1 X

ď

N2
n`1

Pi
n`1 “ tE P N i

n`1 | E X Cn`1 ‰ Øu

1In Geanakoplos and Polemarchakis’s design, at each step, agent 2 announces her prior after agent 1’s announcement,
already taking into account whatever information is conveyed in agent 1’s announcement. This feature is immaterial.
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Again, N i
n`1 is the set of those members of Pi

n that are compatible with Qi
npHq.

2 Hence,
after the announcements at this step, Cn`1 becomes common knowledge, and Pi

n`1 is the set
of those members of N i

n`1 that are not ruled out by Cn`1. Clearly, Pi
n`1 Ď N

i
n`1 Ď P

i
n and

Cn`1 “
Ť

P1
n`1X

Ť

P2
n`1. IfPi

n`1 “ P
i
n, or equivalently, if Cn`1 “ Cn, neither agent learns new

information and the procedure stops; otherwise, agent i updates credence of H to Qi
n`1pHq “

QpH|Pipwq X Cn`1q, and enters the next step.
We will refer to this procedure as the (Bayesian) procedure of communicating posteriors (of

H). Obviously, since P1 and P2 are assumed to be finite, the procedure is guaranteed to stop at
step m` 1 for some m ě 0. Aumann’s original setting — where Q1

0pHq and Q2
0pHq are assumed

to be common knowledge at step 0 (i.e., it is assumed thatN i
1 “ P

i
0) — is a special case in which

the procedure stops at step 1. In general, the procedure stops at step m ` 1 if and only if both
Q1

mpHq and Q2
mpHq are already common knowledge at step m (i.e., before they are announced).

We adapt an example from Geanakoplos and Polemarchakis (1982) to illustrate this proce-
dure.

Example 2.1. Let Ω “ tw1,w2,w3,w4,w5,w6,w7,w8,w9u andA the power set of Ω. Let P1 “

ttw1,w2,w3u, tw4,w5,w6u, tw7,w8,w9uu and P2 “ ttw1,w2,w3,w4u, tw5,w6,w7,w8u, tw9uu.
Let H “ tw3,w4u, and suppose the true state of the world is w1. For the common set of priors,
suppose Q is a density ratio class (Seidenfeld and Wasserman, 1993; see also Section 4):

Q “ tpq1, q2, q3, q4, q5, q6, q7, q8, q9q |
ÿ

1ď jď9

q j “ 1, and
1
2
ď

qk

ql
ď 2, 1 ď k, l ď 9.u

It is easy to calculate that the lower probability of H is: QpHq “ infpPQ ppHq “ 1{8
(obtained at p1{8, 1{8, 1{16, 1{16, 1{8, 1{8, 1{8, 1{8, 1{8q), and the upper probability of H is:
QpHq “ suppPQ ppHq “ 4{11 (obtained at p1{11, 1{11, 2{11, 2{11, 1{11, 1{11, 1{11, 1{11, 1{11q).
Since Q is closed and connected, QpHq “ r1{8, 4{11s.

Suppose the two agents in this example carry out the procedure of communicating posteriors.
Here is a summary of the execution:

Step 0 C0 “ pP
1 ^ P2qpw1q “ Ω. Agent 1 learns the private information P1pw1q “ tw1,w2,w3u

and updates her credence on H to Q1
0pHq “ QpH|P1pw1qq “ r1{5, 1{2s; agent 2 learns

the private information P2pw1q “ tw1,w2,w3,w4u, and updates her credence on H to
Q2

0pHq “ QpH|P2pw1qq “ r1{3, 2{3s.

Step 1 agent 1 announces Q1
0pHq, and so it becomes common knowledge that P1pw1q P N

1
1 “

ttw1,w2,w3u, tw4,w5,w6uu (for QpH|tw7,w8,w9uq “ t0u ‰ Q1
0pHq.) And agent 2 an-

nounces Q2
0pHq, and so it becomes common knowledge thatP2pw1q P N

2
1 “ ttw1,w2,w3,w4uu

(for QpH|tw5,w6,w7,w8uq “ QpH|tw9uq “ t0u ‰ Q2
0pHq.) Thus C1 “

Ť

N1
1 X

Ť

N2
1 “ tw1,w2,w3,w4u, and Pi

1 “ N
i
1. Since C1 ‰ C0, agent 1 updates her cre-

dence to Q1
1pHq “ QpH|P1pw1q X C1q “ r1{5, 1{2s, and agent 2 updates her credence

to Q2
1pHq “ QpH|P2pw1q X C1q “ r1{3, 2{3s.3

Step 2 agent 1 announces Q1
1pHq, and so it becomes common knowledge that P1pw1q P N

1
2 “

ttw1,w2,w3uu (for QpH|tw4,w5,w6u X C1q “ t1u ‰ Q1
1pHq.). And agent 2 announces

2Note that the definition of N i
n`1 also applies to n “ 0, as for every E P Pi

0, E X C0 “ E.
3Although Qi

1pHq “ Qi
0pHq, the procedure goes on, because some agent still acquires new information in this step.
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Q2
1pHq, but that obviously does not change anything, and N2

2 =P2
1. So C2 “ tw1,w2,w3u,

andPi
2 “ N

i
2. Since C2 ‰ C1, agent 1 updates credence to Q1

2pHq “ QpH|P1pw1qXC2q “

r1{5, 1{2s, and agent 2 updates credence to Q2
2pHq “ QpH|P2pw1q X C2q “ r1{5, 1{2s.

Step 3 the agents announce Q1
2pHq and Q2

2pHq, but they do not convey any new information:
C3 “ C2 (or equivalently, Pi

3 “ P
i
2). The procedure stops.

In this example, the communication ends up making each agent’s private information public.
This is not always the case, as later examples will illustrate. When (at least one agent’s) private
information remains private, it is in general possible to agree to disagree. However, in the case
of a precise prior, that is, if Q “ t p̃u is a singleton, Geanakoplos and Polemarchakis (1982,
Proposition 1) showed that when the procedure stops at step m` 1, it is necessarily the case that
Q1

mpHq “ Q2
mpHq. We present a version of the argument here that will facilitate our subsequent

presentation. Suppose the procedure stops at step m ` 1. It means that Pi
m`1 “ P

i
m (for both

i “ 1, 2, as we always intend). This entails, by the definition of Pi
m`1, that

@E P Pi
m,QpH|E X Cmq “ Qi

mpHq “ QpH|Pipwq X Cmq (1)

Since Q “ tp̃u, QpH|E X Cmq “ t p̃pH|E X Cmqu and Qi
mpHq “ QpH|Pipwq X Cmq “

t p̃pH|Pipwq X Cmqu. It follows that

@E P Pi
m, p̃pH|E X Cmq “ p̃pH|Pipwq X Cmq (2)

Since all members of Pi
m are mutually disjoint, (2) entails that

p̃pH|
ď

Pi
m X Cmq “ p̃pH|Pipwq X Cmq (3)

Recall that Cm “
Ť

P1
m X

Ť

P2
m. Hence

Ť

Pi
m X Cm “ Cm. It then follows from (3) that

p̃pH|Pipwq X Cmq “ p̃pH|Cmq (4)

Therefore, p̃pH|P1pwq X Cmq “ p̃pH|P2pwq X Cmq; that is, the two agents end up agreeing.
Two comments are in order. First, equation (4) shows that the two agents are driven to the

same posterior because when the communication stops, the resulting common knowledge (Cm)
renders each agent’s private information (Pipwq) irrelevant to H (even if Cm ‰ P

1pwq XP2pwq).
However, it does not follow that P1pwq and P2pwq are jointly irrelevant to H given Cm. As
Geanakoplos and Polemarchakis (1982, Proposition 3) observed, the consensus reached via the
procedure of communicating posteriors can be different from the consensus that would result
from directly exchanging private information. Clearly, they are different if and only if P1pwq
and P2pwq are jointly relevant to H given Cm, even though each on its own is guaranteed to be
irrelevant given Cm (see Example 6.1 in Section 6).

Second, and more importantly for the purpose of this paper, a crucial step in the above argu-
ment is the move from (2) to (3), where what is needed is the following fact: if all members of a
(finite) set of events E are mutually disjoint, and for every E P E, p̃pH|Eq “ q (where q is a real
number), then p̃pH|

Ť

Eq “ q. An analogous condition for imprecise probabilities would be the
following: if all members of a (finite) set of events E are mutually disjoint, and for every E P E,
QpH|Eq “ Q (where Q is a set of real numbers), then QpH|

Ť

Eq “ Q. This condition does not
hold in general for sets of probabilities.4

4Even in the case of precise probability, it is well known that this condition, as a special case of conglomerability,
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3. Dilation and Agreeing to Disagree on Lower and Upper Probabilities

We borrow a simple example from Carvajal and Correia-da-Silva (2010) to illustrate the
failure of the said condition for sets of probabilities.

Example 3.1. LetΩ “ tw1,w2,w3,w4u andA the power set ofΩ. LetP1 “ ttw1,w2u, tw3,w4uu

and P2 “ tΩu. Suppose Q “ tp1{2, 0, 1{2, 0q, p0, 1{2, 0, 1{2qu; that is, the common set of pri-
ors consists of just two probability measures, represented by the two probability vectors.5 Let
H “ tw2,w3u, and suppose the true state of the world is w1.

This is an Aumann case in that the agents’ posteriors on H are already common knowledge
at the beginning; the procedure of communicating posteriors stops at step 1, for C1 “ C0 “ Ω.
However, Q1

0pHq “ t0, 1u and Q2
0pHq “ t1{2u. Not only are the sets non-identical, they are in

full disagreement in the sense that they do not even intersect and have different lower and upper
probabilities. The agents agree to fully disagree. The condition we highlighted at the end of
Section 2 fails dramatically in this case for agent 1’s partition P1

1 (which is identical to P1 in this
case): QpH|tw1,w2uq “ QpH|tw3,w4uq “ t0, 1u, while QpH|tw1,w2,w3,w4uq “ t1{2u.

This dramatic failure of the condition is known as dilation (Good, 1974; Seidenfeld, 1981;
Walley, 1991; Seidenfeld and Wasserman, 1993; Herron et al., 1997). No matter which member
of P1

1 is the case, the resulting conditional probability is less precise than the probability condi-
tional on

Ť

P1
1. Given a non-empty set of probabilities R, let RpA|Eq “ infpPR ppA|Eq denote

the lower probability of A conditional on E, and RpA|Eq “ suppPR ppA|Eq denote the upper
probability of A conditional on E. Here is a definition of dilation that suits the present purpose.

Definition 3.2 (Dilation). Let R be a non-empty set of probability measures on pΩ,Aq. Let E be
a finite, non-empty set of mutually disjoint events. E is said to dilate an event A with respect to
R (or Rp‚|

Ť

Eq) if for every E P E, the interval rRpA|Eq,RpA|Eqs strictly contains the interval
rRpA|

Ť

Eq,RpA|
Ť

Eqs.

This is a slight generalization of the standard definition of dilation (Seidenfeld and Wasser-
man, 1993, p. 1141)6, for it considers dilation in a subspace

Ť

E (the definition reduces to the
standard one when

Ť

E “ Ω), but the idea and the anomalous feature are exactly the same.
Again, in example 3.1, P1

1, which happens to be the same as tE X C1 | E P P1
1u, dilates the

hypothesis of interest with respect to the given prior. This is not a coincidence, as Theorem 3.4
below shows. It is a simple consequence of the following lemma, which is a straightforward
generalization of Lemma 1 in Carvajal and Correia-da-Silva (2010; also see Kajii and Ui, 2005,
Proposition 3).

can fail for finitely but not countably additive probability measures (de Finetti, 1972; Schervish et al., 1984; Hill and
Lane, 1985). This does not matter in the setup we are considering, for the partitions are assumed to be finite. However,
the original setup in Aumann (1976) seems to allow denumerable infinite partitions, in which case Aumann’s result
does not necessarily hold for merely finitely additive probabilities. More generally, Schervish et al. (2016) showed
that conglomerability can fail in a partition of cardinality κ for a probability measure that is not κ-additive. Thus, if
uncountable partitions are allowed, Aumann’s result may fail even for countably additive measures.

5In case readers are concerned that the two probabilities are not positive and are mutually singular, these special
features are not essential. We can also use Q “ tp1{2´ ε, ε, 1{2´ ε, εq, pε, 1{2´ ε, ε, 1{2´ εqu, 0 ă ε ă 1{4, to make
the same point.

6Herron et al. (1997, p. 412) gave a weaker definition of dilation, requiring only that all conditional intervals contain
and some of them strictly contain the unconditional interval. This definition would work equally well for our purpose.
We thank an anonymous referee for this point.
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Lemma 3.3. Suppose the procedure of communicating posteriors stops at step m` 1. Then

QpH|Cmq Ď rQpH|Pipwq X Cmq,QpH|Pipwq X Cmqs

for both i “ 1, 2.

Proof. As already mentioned, when the procedure stops at step m ` 1, we have equation (1),
namely,

@E P Pi
m,QpH|E X Cmq “ QpH|Pipwq X Cmq

Consider i “ 1 first. Let P1
m “ tE1, ..., Eku. Notice that tE1 XCm, ..., Ek XCmu forms a partition

of
Ť

P1
m X Cm. Hence, for every p P Q, by the law of total probability

ppH|Cmq “ ppH|
ď

P1
m X Cmq “

ÿ

1ď jďk

ppH|E j X CmqppE j X Cm|
ď

P1
m X Cmq (5)

Given equation (1), we have that for every 1 ď j ď k, ppH|E j X Cmq P QpH|E j X Cmq “

QpH|P1pwq X Cmq. It follows that for every 1 ď j ď k,

QpH|P1pwq X Cmq ď ppH|E j X Cmq ď QpH|P1pwq X Cmq (6)

(5) and (6) together entail that

ppH|Cmq ě QpH|P1pwq X Cmq
ÿ

1ď jďk

ppE j X Cm|
ď

P1
m X Cmq “ QpH|P1pwq X Cmq (7)

and

ppH|Cmq ď QpH|P1pwq X Cmq
ÿ

1ď jďk

ppE j X Cm|
ď

P1
m X Cmq “ QpH|P1pwq X Cmq (8)

Since (7) and (8) hold for every p P Q, the desired conclusion is established for i “ 1. The case
of i “ 2 is of course entirely parallel.

Lemma 3.3 shows that although equation (1) does not entail that QpH|Cmq “ QpH|Pipwq X
Cmq, it does entail that QpH|Cmq is bounded by the infimum and supremum QpH|Pipwq X Cmq.
The following theorem is then immediate.

Theorem 3.4. Suppose the procedure of communicating posteriors stops at step m ` 1. If for
both i “ 1, 2, tEXCm | E P Pi

mu does not dilate H, then QpH|P1pwqXCmq “ QpH|P2pwqXCmq

and QpH|P1pwq X Cmq “ QpH|P2pwq X Cmq.

Proof. Lemma 3.3 entails that for both i “ 1, 2,

QpH|Pipwq X Cmq ď QpH|Cmq,QpH|Cmq ď QpH|Pipwq X Cmq.

Since Cm “
Ť

Pi
m X Cm, if either of the inequality is strict, then tE X Cm | E P Pi

mu dilates H,
because of equation (1). Therefore, if tE X Cm | E P Pi

mu does not dilate H, then

QpH|Pipwq X Cmq “ QpH|Cmq,QpH|Cmq “ QpH|Pipwq X Cmq.

The desired conclusion follows.
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Thus, the two agents can agree to disagree on the lower or upper probability of a hypothesis
only if a certain dilation takes place. Without dilation, the two agents are guaranteed to reach
consensus on lower and upper probabilities by communicating posteriors.

It is worth noting that for the argument for Theorem 3.4 to go through, it is not necessary to
require the agents to communicate their sets of posteriors. It is sufficient to ask them to com-
municate lower and upper probabilities at each step. Consider the procedure of communicating
lower and upper posteriors: at step n` 1, agent i announces Qi

npHq and Qi
npHq. Let

N
i:
n`1 “ tE P Pi:

n | QpH|E X Cnq “ Qi
npHq and QpH|E X Cnq “ Qi

npHqu

C
:

n`1 “
ď

N
1:
n`1 X

ď

N
2:
n`1

P
i:
n`1 “ tE P N i:

n`1 | E X C:n`1 ‰ Øu

If Pi:
n`1 “ P

i:
n , or equivalently, if C:n`1 “ C

:
n, the procedure stops; otherwise, agent i updates

credence to Qi
n`1pHq “ QpH|Pipwq X C:n`1q, and enters the next step.

As before, this modified procedure is guaranteed to stop at step m`1 for some m ě 0, because
P1 and P2 are assumed to be finite. The version of Lemma 3.3 on this procedure remains valid,
for equation (1) is not necessary for the argument. All that is needed is the weaker condition that

@E P Pi
m,QpH|E X Cmq “ QpH|Pipwq X Cmq and QpH|E X Cmq “ QpH|Pipwq X Cmq

This weaker condition obviously remains true when Pi
m is replaced by Pi:

m and Cm by C:m. So
Lemma 3.3 still holds for the procedure of communicating lower and upper posteriors. Hence
we also have the following variant of Theorem 3.4.

Theorem 3.5. Suppose the procedure of communicating lower and upper posteriors stops at
step m` 1. If for both i “ 1, 2, tEXC:m | E P Pi:

mu does not dilate H, then QpH|P1pwqXC:mq “

QpH|P2pwq X C:mq and QpH|P1pwq X C:mq “ QpH|P2pwq X C:mq.

Proof. Extremely similar to that of Theorem 3.4.

Although both procedures result in consensus on lower and upper probabilities in the absence
of dilation, in general the agreements they lead to may well be different, for in general commu-
nicating lower and upper posteriors conveys less information than communicating the full sets of
posteriors.

4. More Agreement Results

Under some common assumptions, however, lower and upper probabilities are sufficient to
identify the full set, in which case the two procedures are equivalent and, more importantly, the
consensus reached in the absence of dilation will be full consensus. For example, if we follow
Carvajal and Correia-da-Silva (2010) to assume that the set of priors is closed and connected (or
follow Kajii and Ui (2005) to assume that the set of posteriors is a closed interval), we get the
following result.

Theorem 4.1. Suppose Q is closed and connected (with respect to the total variation topology),
and suppose the procedure of communicating posteriors stops at step m` 1. If for both i “ 1, 2,
tE X Cm | E P Pi

mu does not dilate H, then QpH|P1pwq X Cmq “ QpH|P2pwq X Cmq.
8



Proof. Given the assumption that all the relevant conditional probabilities are well defined as
ratios of unconditional probabilities, the mapping from Q to QpH|Pipwq X C jq is continuous
for every 0 ď j ď m and for both i “ 1, 2. Hence, since Q is assumed to be closed and
connected, QpH|Pipwq X Cmq is a closed interval. Thus QpH|Pipwq X Cmq is identified by
QpH|Pipwq X Cmq and QpH|Pipwq X Cmq. Then Theorem 3.4 entails that QpH|P1pwq X Cmq “

QpH|P2pwq X Cmq.

To our knowledge, Theorem 4.1 is the first attempt to formulate a generalization of Aum-
man’s agreement theorem in the context of imprecise probability that takes agreement to mean
full agreement (identical set of posteriors) rather than partial agreement (intersecting sets of
posteriors). In addition to revealing a connection to the important phenomenon of dilation, The-
orem 4.1 may also be used to generate sufficient conditions for guaranteed full agreement via
communicating posteriors, for important models of imprecise probability, if sufficient conditions
for the absence of dilation in those models are known. As a simple example, consider the density
ratio classes for finite spaces (Wasserman, 1992; Seidenfeld and Wasserman, 1993).

Definition 4.2 (Density Ratio Prior). Let Ω “ tw1, ...,wnu andA the power set of Ω. A density
ratio prior is defined by

Dp,k “ tpq1, ..., qnq |
ÿ

1ď jďn

q j “ 1 and
qh

q j
ď k

ph

p j
,@1 ď h, j ď nu

where k ě 1 and pp1, ..., pnq is a probability vector such that p j ą 0 for all 1 ď j ď n.

For instance, Example 2.1 in Section 2 employs a density ratio prior, where p is the uniform
distribution over the 9-atom algebra and k “ 2.

Corollary 4.3. If two agents start with a common density ratio prior and carry out the procedure
of communicating posteriors, they are guaranteed to reach the same set of posteriors.

Proof. Seidenfeld and Wasserman (1993, Theorem 4.1) showed that the density ratio priors are
dilation-immune in the sense that no finite partition of the sample space dilates any hypothesis.
Note also that if D is a density ratio prior on pΩ,Aq, then for every E P A, Dp‚|Eq remains a den-
sity ratio prior on the space restricted to E, which follows easily from Definition 4.2. Moreover,
a density ratio prior is obviously closed and connected. Then Theorem 4.1 entails the desired
conclusion.

Another simple consequence of Theorem 3.4 is that if we just consider partial agreement, in
the sense of a non-empty intersection of sets of posteriors (Kajii and Ui, 2005, 2009; Carvajal
and Correia-da-Silva, 2010), we can drop the assumption of connectedness in Theorem 4.1.

Theorem 4.4. Suppose Q is closed, and suppose the procedure of communicating posteriors
stops at step m`1. If for both i “ 1, 2, tEXCm | E P Pi

mu does not dilate H, then QpH|P1pwqX
Cmq XQpH|P2pwq X Cmq ‰ Ø.

Proof. Since Q is closed, QpH|PipwqXCmq is also closed, for the mapping from Q to QpH|PipwqX
Cmq is continuous. Thus, QpH|Pipwq XCmq contains its infimum and supremum. It then follows
from Theorem 3.4 that QpH|P1pwq X Cmq XQpH|P2pwq X Cmq ‰ Ø.

In general the topological assumptions in Theorem 4.1 and Theorem 4.4 are not redundant.
Consider the following variation of Example 3.1:
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Example 4.5. The setup is the same as Example 3.1, except for the common prior Q. Let Z
denote the set of all integers. Let xαz | 0 ă αz ă 1, z P Zy be an increasing sequence of rational
numbers (in the open interval p0, 1q), such that limzÑ´8 αz “ 0 and limzÑ8 αz “ 1. Let xγzy be
a sequence of positive irrational numbers such that γz ă minpαz

2 ,
1´αz

2 q. Define Q “ Q1 Y Q2,
where

Q1 “ tp
1´ αz

2
´ γz,

αz

2
` γz,

αz

2
´ γz,

1´ αz

2
` γzq | z P Zu

Q2 “ tp
1´ αz

2
` γz,

αz

2
´ γz,

αz

2
` γz,

1´ αz

2
´ γzq | z P Zu

In this example, Q is neither connected nor closed. It is easy to see that

QpH|tw1,w2uq “ QpH|tw3,w4uq “ tαz ` 2γz | z P Zu Y tαz ´ 2γz | z P Zu

Thus it remains an Aumman case in which both agents’ posteriors are already common knowl-
edge before they are announced. Notice, however, that dilation does not occur here, for

QpH|Ωq “ tαz | z P Zu

which has the same infimum (i.e., 0) and supremum (i.e., 1) as QpH|tw1,w2uq and QpH|tw3,w4uq.
As a result, the two agents agree on the posterior lower probability and upper probability. How-
ever, Q1

0 (“ QpH|tw1,w2u) and Q2
0 (“ QpH|Ωq) are clearly disjoint: the former is a set of

irrational numbers and the latter is a set of rational numbers. Hence, without the condition of
closure, Theorem 4.4 does not hold in general. If we make Q in this example closed by adding
the two limit points p0, 1{2, 1{2, 0q and p1{2, 0, 0, 1{2q, then the two sets of posteriors intersect
(at the limit points), but of course they are far from identical. Therefore, in Theorem 4.1, the
condition of connectedness is also needed.

5. Dilation-Averse Updating

The presence of dilation may alarm some agents, who may be inclined to think that they
are permitted or even rationally required to ignore information that would increase the ambigu-
ity of their credences. One of the best known examples of this kind is Kyburg’s (1961, 1974)
interval-valued theory of Epistemological Probability, which precludes the possibility of dila-
tion, primarily because of its Strength rule for determining which is the relevant reference set for
using information about an interval of frequencies also as the probability interval. Informally,
the Strength rule requires that we ignore added information whenever that added information
generates a narrower reference set with strictly less informative statistical, frequency informa-
tion. More specifically, suppose that the knowledge base for Epistemological Probability (EP)
includes the following information as the most informative frequency information about the event
Hpaq: individual a has the property H.

• Reference set R1 is a proper subset of reference set R2, i.e., R1 Ă R2.

• Individual a belongs to R1; hence, R1 is a strictly narrower, i.e. logically stronger reference
set for a than is R2.

• The relative frequency of H in R1 falls in the interval rl1, u1s. The relative frequency of H
in R2 falls in the interval rl2, u2s. The interval rl2, u2s is strictly contained in the interval
rl1, u1s.

10



Then with respect to this knowledge base, the Strength rule requires that EPpHpaqq “ rl2, u2s.
Whatever additional information responsible for the difference between R1 and R2 is ignored.

The Strength rule is clearly analogous to an updating rule that would avoid dilation by some-
times ignoring information. However, Levi (1977) noted that it conflicts with basic Bayesian
tenets even when the theory delivers precise values. Here is Levi’s example.

Example 5.1. Suppose we know that Petersen (denoted a) is a Swedish resident of Malmo. Let
H be the property that a person is Protestant. The corpus of knowledge K includes the following
frequency facts about the two competing reference sets: Swedes, and residents of Malmo.

• 90% of Swedes are Protestants.

• However, regarding residents of Malmo, the frequency information is not precise. Either
A1: 85% of Malmos residents are Protestants; or A2: 91% of Malmos residents are Protes-
tants; or A3: 95% of Malmos residents are Protestants.

In this example, with respect to corpus K, Kyburg’s theory entails that EPpHpaqq “ r0.9, 0.9s,
i.e., a precise value, for the Strength rule fixes the logically weaker but statistically more infor-
mative reference set (Swedes) over the rival reference set of Malmo residents for delivering EP.
Similarly, Kyburg’s theory also entails each of the following precise probability statements with
respect to expansions of K that result by adding some Boolean combinations of the three hy-
potheses:

EPpHpaq; K ` A1q “ r0.85, 0.85s
EPpHpaq; K ` A2q “ r0.91, 0.91s
EPpHpaq; K ` A3q “ r0.95, 0.95s

EPpHpaq; K ` pA1 _ A3qq “ r0.9, 0.9s
EPpHpaq; K ` pA1 _ A2qq “ r0.9, 0.9s

EPpHpaq; K ` pA1 _ A2 _ A3qq “ r0.9, 0.9s

Each of the last three of these six EP statements results by an application of the Strength rule,
which picks the statistically more informative and logically weaker reference set (Swedes) for
determining the EP that Petersen is a Protestant.

However, these six precise EP values are not consistent with a precise probability function
in the sense that there is no “prior” distribution over these three simple statistical hypotheses
tA1, A2, A3u that satisfies all six precise EP values. In other words, the EP theory does not follow
the Bayesian law that there exists a “prior” against which one may average the “likelihood”
function, even when it delivers precise values!

Evidently, Levi’s construction can be generalized to any inductive theory of interval-value
probability that avoids dilation by appeal to a Strength-like rule — where priority is assigned
to informativeness of the probability interval over the requirement of total evidence (see also
Seidenfeld, 2007). Doing so conflicts with basic Bayesian theory.

On the other hand, Grünwald and Halpern (2004) showed that once non-Bayesian criteria
such as minimax of loss are used, optimal decision rules often require ignoring information
about the value of a dilating partition. It is fair to say that whether dilating information can or
should be ignored remains a matter of debate.

We do not pretend to resolve the debate here, but we would like to reformulate the main ideas
of this paper in terms of dilation-averse agents, which may provide a useful perspective to think
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about our results. An agent participating in the communication procedure is said to be dilation-
averse if she does not condition on her information about the value of a partition that dilates the
hypothesis of interest, but is otherwise happy to update by conditioning.7 Suppose it is common
knowledge that the two agents who communicate posteriors are dilation-averse. To model this
situation, the procedure of communicating posteriors should be modified as follows.

At step 0, for each agent i, if Pi
0 “ tE P Pi | E X C0 ‰ Øu dilates H, she updates her

credence by conditioning on the common knowledge C0: Q1
0pHq “ QpH|C0q; otherwise, she

updates her credence in the standard way: Q1
0pHq “ QpH|P1pwqq.

At step n`1, the agents announce Q1
npHq and Q2

npHq, respectively. Consider the set Ñ i
n`1 “

tE P Pi
n | QpH|E X Cnq “ Qi

npHqu. It is easy to see that Ñ i
n`1 “ Ø if and only if there was

dilation at step n. Let

N i
n`1 “

!

Pi
n if Ñ i

n`1 “ Ø,
Ñ i

n`1 otherwise.

That is, when Ñ i
n`1 “ Ø, no new information is conveyed by the announcement of Qi

npHq. As
before, let Cn`1 “

Ť

N1
n`1 X

Ť

N2
n`1, and Pi

n`1 “ tE P N i
n`1 | E X Cn`1 ‰ Øu. Clearly,

it remains true that Pi
n`1 Ď N

i
n`1 Ď P

i
n and Cn`1 “

Ť

P1
n`1 X

Ť

P2
n`1. If Pi

n`1 “ P
i
n,

or equivalently, if Cn`1 “ Cn, the procedure stops; otherwise, agent i updates credence of H
according to whether tE X Cn`1 | E P Pi

n`1u dilates H. If it does not dilate H, the credence is
updated to Qi

n`1pHq “ QpH|Pipwq X Cn`1q; otherwise, the credence is updated to Qi
n`1pHq “

QpH|Cn`1q.
For instance, if the agents in Example 3.1 are commonly known to be dilation-averse and

follow the above procedure, then at step 0, seeing that her partition ttw1,w2u, tw3,w4uu dilates
H, agent 1 will ignore her private information (i.e., tw1,w2u) and go with Q1

0pHq “ QpH|C0q “

t1{2u. Then at step 1, Pi
1 “ N

i
1 “ P

i
0, and the procedure stops.

As the original, Bayesian procedure of communicating posteriors, this dilation-averse proce-
dure will surely stop at step m ` 1 for some m ě 0. It is then very easy to adapt the arguments
for Theorems 3.4, 4.1, and 4.4 to show the following:

Theorem 5.2. Suppose the dilation-averse procedure of communicating posteriors stops at step
m` 1. Then

1) Q1
mpHq “ Q2

mpHq and Q1
mpHq “ Q2

mpHq;
2) If Q is closed, then Q1

mpHq XQ2
mpHq ‰ Ø; and

3) If Q is closed and connected, then Q1
mpHq “ Q2

mpHq.

Proof. For each i, either tEXCm | E P Pi
mu dilates H, in which case Qi

mpHq “ QpH|Cmq by the
design of the procedure, or tE X Cm | E P Pi

mu does not dilate H, in which case the argument
for Theorem 3.4 is applicable to derive that Qi

mpHq “ QpH|Cmq and Qi
mpHq “ QpH|Cmq. Either

way we have 1). The derivations of 2) and 3) from 1) are the same as those of Theorems 4.4 and
4.1.

Therefore, two agents who are commonly known to be dilation-averse cannot agree to dis-
agree on lower or upper probabilities, and, under common assumptions, cannot agree not to fully
agree.

7This dilation-averse updating rule is in a way weaker than Kyburg’s Strength rule, in that it only ignores information
when the information is about the value of a dilating partition. Still, Levi’s example (Example 5.1) can be adapted to
reveal the conflict of this weaker rule with basic Bayesian theory.
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6. Discussion and Conclusion

Like Aumann’s original result, the results in this paper are mathematically simple once the
framework is set up, but they highlight an interesting connection between the possibility of agree-
ing to disagree and the phenomenon of dilation. We offered two perspectives to view this con-
nection. For Bayesian agents with a common set of priors, agreeing to disagree on lower or
upper posteriors entails the presence of dilation for at least one of them. For dilation-averse (but
otherwise Bayesian) agents with a common set of priors, it is impossible to agree to disagree on
lower or upper posteriors.

Although the absence of dilation is sufficient for Bayesian agents to reach agreements by
communicating posteriors, it is certainly not necessary. Here is a simple example to show this.

Example 6.1. LetΩ “ tw1,w2,w3,w4u andA its power set. SupposeP1 “ ttw1,w2u, tw3,w4uu

and P2 “ ttw1,w3u, tw2,w4uu. Let H “ tw1,w4u, and suppose the true state of the world is w1.
Let p̃ be the uniform distribution over the 4-atom algebra, and Λ be the set of all distributions
over the 4-atom algebra, and let Q “ tp0.8 p̃` 0.2q | q P Λu.8

Like Example 3.1, this is an Aumann case, where the posteriors of H are common knowl-
edge without announcements, because QpH|tw1,w2uq “ QpH|tw3,w4uq “ r1{3, 2{3s, and
QpH|tw1,w3uq “ QpH|tw2,w4uq “ r1{3, 2{3s. So the procedure of communicating pos-
teriors stops at step 1, and C1 “ C0 “ Ω. Dilations do occur, for both agents, because
QpH|C0q “ QpHq “ r0.4, 0.6s, which is strictly contained in r1{3, 2{3s. Despite the pres-
ence of dilations, the two agents will still reach an agreement even if they are not dilation-averse,
though of course the agreement is different from the one dilation-averse agents would reach.

It is also worth noting that this example is a generalization of an example from Geanakoplos
and Polemarchakis (1982), which was used to illustrate the fact we mentioned in Section 2,
that the consensus resulting from communicating posteriors can be different from the consensus
resulting from directly exchanging private information. If both pieces of private information in
the example become public, the two agents will converge on a precise, extreme probability.

There are several ways in which our results may be expanded. First, a potentially interesting
route is to take advantage of the connection between Aumman-style agreement theorems and the
so-called no-trade theorems. Instead of emphasizing the agreement of posteriors when they are
common knowledge, the no-trade theorems establish conditions under which it is impossible to
have a trade that is commonly known to be acceptable to both parties. For example, Milgrom
and Stokey (1982) showed that given an ex ante Pareto-efficent arrangement (and some mild
assumptions), even after the agents receive different private information, there is no trade that can
be commonly known to be mutually acceptable. This remarkable result implies that significant
volumes of trade in real-world markets cannot be explained solely on the basis of informational
differences. Sebenius and Geanakoplos (1983), Holmström and Myerson (1983), and Rubinstein
and Wolinsky (1990), among others, continued this line of research and established several no-
trade type results.

Here is a very simple example to illustrate the connection between no-trade results and Au-
mann’s agreement result.

8This ε-contamination model (ε “ 0.2) can be equivalently specified as the largest set of probability measures on the
4-atom algebra that satisfy the constraint that every atom receives a lower probability of 0.2.
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Example 6.2. Let Ω “ tw1,w2,w3,w4u and suppose two agents have the same precise prior:
ppwiq “

1
4 . The information partitions areP1 “ ttw1,w2u, tw3,w4uu andP2 “ ttw1,w4u, tw2,w3uu,

respectively. For simplicity, consider just one possible transaction such that if it is carried out,
the agents’ state-dependent payoffs are given as follows: u1 “ 1.9´ i and u2 “ i´ 1.9, where i
is the index of the state wi; otherwise, each agent receives 0. Suppose the true state of the world
is w2.

In this simple situation, the arrangement is ex ante pareto-efficient with respect to the trans-
action in question, in the sense that the transaction is not acceptable to both agents before they
receive private information. But after they receive private information at state w2, agent 1’s
expected payoff from the transaction becomes 0.4, and agent 2’s expected payoff from the trans-
action becomes 0.6. Both are positive and thus both parties are willing to trade. However, once
it becomes common knowlege that both are willing to trade, further information is coveyed to
the agents. In this case, once agent 2 knows that agent 1 is willing to trade, then agent 2 learns
that agent 1 has received the information tw1,w2u rather than tw3,w4u, for the latter would have
made the transaction unacceptable to agent 1. Combining this with her own private informaiton,
agent 2 gets to know that the true state is w2. Similarly, agent 1 can reason that 2 can reason this
way and distinguish between w1 and w2. Since agent 2 is still willing to trade, agent 1 knows that
agent 2 knows that the true state is w2. Then the transaction is not acceptable to agent 1 after all.

The key idea is that once the willingness to trade becomes common knowledge, this new
information changes the agents’ beliefs in a way that destroys the incentives to trade. This should
be reminiscent of what gives rise to Aumman-style agreement results. In this simple case, the
two agents converge to the same posterior after it becomes common knowledge that both parties
are willing to carry out the transaction. Consequently, the rational expectations based on the new,
agreed posterior would make the transaction unacceptable for at least one party.

In view of the connection illustrated above and the generalization of Aumman’s agreement
theorem in the context of imprecise probability, it is natural to ask whether no-trade theorems can
be similarly generalized. There have been many attempts to extend no-trade theorems beyond
the context of standard expected utility preference (e.g., Dow et al. (1990), Ma (2001), Halvey
(2004), Wakai (2002), Kajii and Ui (2009)). In particular, Kajii and Ui (2009) gave an elegant
charaterization of interim efficiency under Bewley’s (2002) incomplete preferences derived from
multiple priors (and concave utility functions). Using this characterization, they showed that
there is a no-trade theorem (which essentially says that ex ante efficiency entails interim effi-
ciency) in their setting if agents employ the full Bayesian updating rule, and they demonstrated
how the result is intimately related to an agreement result on“partial” agreement between sets of
probabilities. We suspect that our results on “full” agreement in this paper may be adapted to
develop new no-trade results that apply to a wider range of preference models, for intuitively a
full agreement between posteriors may ensure interim efficiency under a wider range of prefer-
ence models than a merely partial agreement does. This strikes us as an interesting question to
explore further.

Second, speaking of partial agreement, it is worth noting that when “agreement” is inter-
preted as partial agreement, the common prior assumption may also be relaxed to the assumption
that priors (partially) agree, i.e., that the two sets of priors have a non-empty intersection. This
is, for example, what Carvajal and Correia-da-Silva (2010) assume in their results. Their main
agreement result about Bayesian agents (Proposition 1) is that if two Bayesian agents have closed
and connected sets of priors that have a non-empty intersection, and both sets of posteriors on
a hypothesis are common knowledge, then the sets of posteriors also have a non-empty inter-
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section. This result, just like Aumman’s original result, is straightforwardly generalizable to the
setting of communicating posteriors. An open question, in light of our results here, is what pur-
chase the condition of no dilation has in the context of priors that do not fully agree, or to put
it differently, whether stronger agreement results are available in this context for dilation-averse
agents.

Third, we have only considered the full Bayesian updating rule (and the dilation-averse vari-
ant). Other updating rules may be examined in our setting, especially the Dempster-Shafer updat-
ing rule, which was considered by Kajii and Ui (2005, 2009) and Carvajal and Correia-da-Silva
(2010). For Dempster-Shafer updating, Carvajal and Correia-da-Silva’s main agreement result
requires each agent’s set of likelihood maximizers as well as their sets of posteriors to be com-
mon knowledge, which suggests that communication of posteriors alone is in general not enough
to guarantee agreement, even if dilation — which can also occur with Dempster-Shafer updating
(Seidenfeld, 1997) — is assumed away. One natural idea is to allow also the communication of
likelihood maximizers. On the other hand, Seidenfeld (1997) showed that for ε-contamination
models (Huber, 1973; Berger, 1984) Dempster-Shafer updating is equivalent to full Bayesian
updating. Therefore, if we can derive a corollary about ε-contamination models (in the spirit of
Corollary 4.3) from Theorem 4.1 and results on dilation in ε-contamination models, that will also
apply to Dempster-Shafer updating.
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